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Preamble

This white paper summarizes the workshop “U.S. Cosmic Visions: New Ideas in Dark Mat-
ter” held at University of Maryland from March 23-25. The flagships of the US Dark
Matter search program are the G2 experiments ADMX, LZ, and SuperCDMS, which will
cover well-motivated axion and WIMP dark matter over a range of masses. The workshop
assumes that a complete exploration of this parameter space remains the highest priority
of the dark matter community, and focuses instead on the science case for additional new
small-scale projects in dark matter science that complement the G2 program (and other
ongoing projects worldwide). It therefore concentrates on exploring distinct, well-motivated
parameter space that will not be covered by the existing program; on surveying ideas for
such projects (i.e. projects costing ∼$10M or less); and on placing these ideas in a global
context. The workshop included over 100 presentations of new ideas, proposals and recent
science and R&D results from the US and international scientific community.
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Executive Summary

Deciphering the fundamental nature of dark matter—its cosmological origin, its con-
stituents, and their interactions—is one of the foremost open questions in fundamental
science today with tremendous potential to deepen our understanding of the laws of Nature.
The existing dark matter experimental program is focused primarily on weakly-interacting
massive particles (WIMPs), which remain of great interest. At the same time, given the
importance of dark matter, there is strong motivation to explore a broader set of dark mat-
ter candidates. Indeed, the 2014 P5 report calls out the importance of “search[ing] for dark
matter along every feasible avenue.”

In recent years, the field of dark matter has been characterized by the blossoming of many
innovative ideas. New dark matter candidates have emerged that, like previous candidates,
are highly motivated by beautiful theoretical results or experimental data, but are qualita-
tively different in their experimental implications. Most notably, some of these candidates
can be explored by small experiments with short timescales, where a modest investment
can have an outsize impact. Two broad classes of dark matter models stand out as ripe for
exploration:
Hidden-Sector Dark Matter candidates are completely neutral under Standard Model forces,
but interact through a new force. The low-mass (sub-GeV) parameter space for hidden-
sector dark matter is both important and beyond the reach of the existing program. Par-
ticularly well-motivated milestones in parameter space are derived from general production
mechanisms, theory, and current experimental anomalies. Novel small-scale direct detection
experiments, fixed-target experiments, and even astrophysical, nuclear, and atomic probes
each have unique sensitivities to fully explore these milestones.
Ultra-Light Dark Matter candidates have masses from 10−22 eV to about a keV, and that can
be produced during inflation or phase transitions in the very early Universe. A particularly
motivated case is QCD axion dark matter, predicted by the axion solution to the strong
CP problem, which defines an important milestone in coupling sensitivity as a function
of mass. Much of this parameter space, including low-mass QCD axions, was thought to
be completely inaccessible several years ago, but can now be explored by a suite of new
experimental approaches.

The community has presented a diverse and innovative set of experimental proposals,
including potential game-changers in the search for their respective dark matter candidates.
Many exploit unique US-based facilities and/or expertise, and represent natural opportuni-
ties for US leadership in the field. The proposals described in this document demonstrate
the vibrancy of the dark matter community in universities and labs in the United States
and around the world. Many of the new ideas presented here were spawned not by a pro-
grammatic approach to the dark matter problem, but by small groups developing ideas and
technologies to tackle a variety of fundamental questions. In many cases, these propos-
als are the result of close collaboration between experimentalists and theorists and include
researchers from disciplines outside of high energy physics, such as nuclear, atomic, and
condensed matter physics.

We highlight five important directions (not ordered by priority) for a small experiments
program and continued innovation in dark matter (DM) physics:

• Low-threshold direct detection is an active field with a wealth of low-cost new and inno-
vative ideas that can probe a variety of highly motivated Hidden-Sector and Ultralight
DM candidates, and affords the only prospect to begin testing the tiny couplings as-
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sociated with hidden-sector freeze-in through an ultralight mediator. It is important
to pursue both DM-electron and DM-nuclear scattering experiments, as they have
complementary sensitivities. Some proposals are ready for small-project-scale funding
now, while several will be ready for small-project-scale funding within the next 1 to
2 years. In addition, the potential to lower energy thresholds by orders of magnitude
motivates continued technology R&D.

• A suite of experiments using multiple technologies are required to explore the wide
parameter space of light new-force carriers, and in particular the full mass range for
QCD axions. The ADMX G2 experiment is currently exploring an exciting region of
QCD axion mass range, and many new experimental approaches are in pilot phases
now. Together with ADMX, next-generation experiments at the small-project scale
can explore much of the highly motivated QCD axion parameter space over the next
decade.

• Accelerator experiments can both produce and detect new particles, such as dark
matter and the particles mediating new interactions. This unique ability has enabled
beam dump, missing mass/energy, and visible mediator search experiments to achieve
world-leading sensitivity to highly sought-after dark matter scenarios. Building on
these proven techniques and exploiting existing US accelerator facilities, a small num-
ber of fixed-target experiments can broadly explore sub-GeV dark matter and associ-
ated forces with sufficient sensitivity to test all predictive thermal DM scenarios. This
focused effort is based on established detector technology, with a number of modest-
cost proposals ready for funding now to achieve significant science in the next few
years.

• Existing data may already be pointing to dark sector physics. Anomalies in (g− 2) of
the muon and in the properties of beryllium-8 nuclei provide tentative evidence for a
new boson at the 10 MeV-scale that can be tested by nuclear and atomic spectroscopy
experiments. The small-scale structure of dark matter halo distributions may be ex-
plained by dark matter self-interactions with 1-100 MeV mediators. LIGO’s discovery
of colliding black holes motivates micro-lensing probes of solar mass black hole dark
matter. These puzzles each define sharp, highly-motivated targets that can be resolved
by small investments in experiment, simulations, and theory. Typical timescales are 1
to 2 years and budgets are a small fraction of the small projects threshold.

• Progress in theory has been the driving force behind recent developments in dark mat-
ter, particularly proposals for small-scale experiments and innovative connections to
other subfields. Additional investments in theory are essential to exploit cosmological
and astrophysical data to improve measurements of dark matter’s particle properties
and to develop the novel connections to nuclear, atomic, and condensed matter physics
that have already been identified.

All of these directions are scientifically important, and they motivate a portfolio of multiple
small experiments in dark matter, including experiments in direct detection, accelerator-
based searches, searches for coherent-field dark matter, and broad investigations of dark-
sector properties, as well as targeted investments in theory. A healthy dark matter research
program should include both large- and small-scale efforts. This document illustrates both
the breadth and the promise of small-scale opportunities in dark matter science, any one of
which may lead to a breakthrough and transform our understanding of the cosmos.
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I. INTRODUCTION

The evidence for dark matter comes from cosmological and astrophysical measurements
in many different contexts and over a wide range of scales — from the shape of the cosmic
microwave background (CMB) power spectrum to cluster and galactic rotation curves and
gravitational lensing. Yet all of these data are essentially gravitational, and therefore tell
us little directly about the particle nature of dark matter. In particular, constituents of
dark matter could be as light as 10−22 eV or as heavy as 100M�, and still be consistent
with these observations. Deciphering the fundamental nature of the dark matter — its
cosmological origin, its constituents, and their interactions — is one of the foremost open
questions in basic science today. Answering this question involves synergies across multiple
levels: between experimentalists and theorist and between high energy physics and other
disciplines, such as nuclear, atomic, and condensed matter physics.

The search for dark matter can be focused by putting it in the context of known cosmol-
ogy and particle physics: how our Universe’s cosmic history gives rise to the dark matter
abundance, and how the Standard Model both informs and restricts the possibilities for dark
matter particles’ interactions. That these guiding questions have many possible answers is
part of the reason why uncovering the particle nature of dark matter is so important, and so
challenging; it also necessitates a multi-faceted program with different techniques optimized
for different dark matter mass ranges and interactions.

The 2014 P5 report has called out the importance of a broad dark matter search program:
“It is imperative to search for dark matter along every feasible avenue,” and the breadth
of “well-motivated ideas for what dark matter could be, [which] include weakly interacting
massive particles (WIMPs), gravitinos, axions, sterile neutrinos, asymmetric dark matter,
and hidden sector dark matter” [1]. Some of these scenarios – including (with some notable
exceptions) WIMP, gravitino, and sterile neutrino DM — are the purview of larger experi-
ments, as reviewed for example in [2]. But much of the well-motivated parameter space for
dark matter can be explored by small experiments in the near future.

Two broad classes of dark matter model stand out as strongly motivated possibilities
where small experiments can have an outsized impact:

• Dark matter in the vicinity of Standard Model scales includes WIMPs, which inter-
act through SM forces, and also hidden-sector DM — dark matter that interacts
through a new force (sometimes called a “dark sector”). They share common motiva-
tions — in both cases, the thermal history of the Universe and the couplings to familiar
matter play key roles in generating the observed DM abundance. Hidden-sector DM
is viable over a wider mass range than WIMPs. The parameter space below the GeV
scale is largely invisible to WIMP searches, but presents multiple opportunities for
new experiments. For example, low-threshold direct detection experiments can ex-
plore well-motivated parameter space even with gram-scale target masses, and exploit
a unique kinematic enhancement at low mediator masses to start exploring the very
weakly coupled “freeze-in” scenarios. Accelerator-based experiments offer a robust
probe of sub-GeV hidden-sector DM produced through thermal freeze-out, fully ex-
ploring the most predictive models. Moreover, the DM physics in these hidden-sector
models also encompasses other effects of the new force, such as DM self-interactions
and new reactions of ordinary matter.

• Ultra-light dark matter, in the mass range from 10−22 to about a keV, includes
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scalar, pseudo-scalar, and vector boson DM that are produced during inflation or a
high-temperature phase transition. In most of this parameter space, the DM acts as
an oscillating classical field, whose coupling to matter can be detected by a variety of
precision experiments. The QCD axion solution to the strong CP problem motivates
axion dark matter, and provides a well defined target in the coupling sensitivity-dark
matter mass parameter space. Much of the axion parameter space was believed to
be inaccessible several years ago, but the development of several new experimental
techniques and advances in detector capabilities opens the possibility of searching a
large portion of this space in the near future.

These two frameworks, as well as specific production mechanisms within each framework,
experimental anomalies, and search techniques, are shown in Fig. 1.

This white paper summarizes the workshop “U.S. Cosmic Visions: New Ideas in Dark
Matter” held at University of Maryland from March 23-25. The workshop focused on the
science case for new small-scale projects in dark matter science, on surveying ideas for such
projects (i.e. projects costing ∼ $10M or less) in the U.S. Dark Matter search program, and
on placing these ideas in a global context. The workshop included over 100 presentations of
new proposals and recent results from the US and international scientific community.

This report parallels the structure of the workshop. Section II summarizes the science case
for exploring dark matter parameter space, as well as high-value parameter-space targets
that were highlighted at the workshop and the prospects for testing them. The following
sections are organized, parallel to the structure of the workshop, around four working groups:

• New Avenues in Direct Detection (Section IV), including spin-dependent WIMP
scattering and many new ideas aimed at direct detection of dark matter lighter than
traditional WIMPs, from several GeV down to the meV scale,

• Detection of Ultra-Light (sub-eV) Dark Matter (Section V), exploiting several
physical effects to search for coherent-field effects of dark matter ranging from 10−22−1
eV, including QCD axions,

• Dark Matter Production at Fixed Target and Collider Experiments (Section
VI), searching for sub-GeV dark matter (and related new forces) with small-scale fixed-
target experiments to a level of sensitivity motivated by models of light thermal Dark
Matter, and

• New Candidates, Targets, and Complementarity (Section VII), surveying new
theoretical models, high-value regions of parameter space motivated by existing ex-
perimental anomalies and theoretical ideas, the interplay of dark matter searches from
different subfields and the complementarity of proposed small-scale experiments with
the data expected from the existing program.

There is a broad and active community of physicists pursuing these new directions, and
developing experiments that, taken together, cover broad parameter regions with great sen-
sitivity and decisively explore several high-priority targets. The experimental approaches
presented at the workshop are highly complementary — each of the working groups has
identified models for which particular techniques are uniquely sensitive, while in many other
cases a combination of different experimental approaches is required to move from discovery
to a physical understanding of dark matter.
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FIG. 1: Mass ranges for dark matter and mediator particle candidates, experimental anomalies,

and search techniques described in this document. All mass ranges are merely representative; for

details, see the text. The QCD axion mass upper bound is set by supernova constraints, and

may be significantly raised by astrophysical uncertainties. Axion-like dark matter may also have

lower masses than depicted. Ultralight Dark Matter and Hidden Sector Dark Matter are broad

frameworks. Mass ranges corresponding to various production mechanisms within each framework

are shown and are discussed in Sec. II. The Beryllium-8, muon (g − 2), and small-scale structure

anomalies are described in VII. The search techniques of Coherent Field Searches, Direct Detection,

and Accelerators are described in Secs. V, IV, and VI, respectively, and Nuclear and Atomic Physics

and Microlensing searches are described in Sec. VII.

II. SCIENCE CASE FOR A PROGRAM OF SMALL EXPERIMENTS

Given the wide range of possible dark matter candidates, it is useful to focus the search
for dark matter by putting it in the context of what is known about our cosmological history
and the interactions of the Standard Model, by posing questions like: What is the (particle
physics) origin of the dark matter particles’ mass? What is the (cosmological) origin of
the abundance of dark matter seen today? How do dark matter particles interact, both
with one another and with the constituents of familiar matter? And what other observable
consequences might we expect from this physics, in addition to the existence of dark matter?
Might existing observations or theoretical puzzles be closely tied to the physics of dark
matter? These questions have many possible answers — indeed, this is one reason why
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understanding the particle nature of dark matter is so important — with each case pointing
to a different range of dark matter properties and hence motivating different techniques to
search for dark matter particles.

The WIMP hypothesis that has dominated the DM search program to date offers a good
example of many of these motivations: new, weakly interacting particles at or above the
weak scale are predicted in many models that address the electroweak hierarchy problem.
In this mass range, the weak interactions with familiar matter can naturally explain their
abundance. While WIMP dark matter remains highly motivated, several factors motivate a
broader approach to the dark matter question. Significant parameter space for both WIMPs
and the supersymmetric models that realize WIMP dark matter have been explored by recent
advances in direct detection, indirect detection, and LHC searches. New experimental ideas
have opened prospects to explore the full viable mass range for axion DM, another long-
standing DM candidate motivated by the strong CP problem. Meanwhile, experimental
anomalies are suggestive of substantial new interactions between DM particles and of new
forces very weakly coupled to ordinary matter. In parallel with (and often spurred by) these
experimental developments, theoretical progress has underscored that both WIMP and axion
dark matter are special cases of broader theoretical frameworks that have many of the same
attractive features. That these general frameworks can be very effectively explored by small
experiments makes them particularly exciting.

A. Broad Frameworks for Dark Matter Motivating Small Experiments

The dark matter candidates motivating small experiments can be organized into two
broad classes, within which we highlight sharp, well-motivated targets that can be explored
or robustly tested by a program of small experiments:

Hidden-sector Dark Matter is a natural generalization of the WIMP idea to include
interactions through a new force rather than just SM forces. These two scenarios are closely
related: both suggest DM near Standard Model mass-scales, and in both cases the thermal
history of the Universe and coupling to familiar matter play key roles in generating the
observed DM abundance — whether or not the DM ever reached thermal equilibrium with
familiar matter. However, the hidden-sector case — in particular, the parameter space with
GeV-scale or lighter DM and/or mediators — opens up qualitatively new directions for
experiment. Cosmological DM production mechanisms, theoretical ideas, and observations
point to parameter-space milestones of particular interest. Proposed small experiments
are poised to conclusively test the most predictive possibility for thermal freeze-
out of hidden-sector DM, where DM annihilates directly into SM particles, over
most of the sub-GeV mass range. They will also explore parameter space for
many other production mechanisms, including thermal DM with “secluded”
annihilation, asymmetric DM, and very weakly coupled DM that “freezes in”
without reaching equilibrium. Any new interaction between dark and familiar matter
necessarily has consequences in the self-interactions of DM and of familiar matter, as well.
Intriguingly, several anomalies in data point to possible new physics, weakly coupled to
familiar matter, in the 1-100 MeV scale, while a suppression of cosmological small-scale
structure may be explained by DM self-scattering through a mediator in the same mass
range.

Ultralight dark matter, bosonic particles with sub-keV mass include the QCD axion
and generic light scalar, pseudo-scalar, and vector bosons coupled linearly to familiar matter.
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Such particles can arise from string theory or other high-energy phenomena, with their
masses protected by symmetries that generically also lead to exponentially small couplings
to matter. The observed DM abundance can be produced during an initial inflationary phase
of cosmology or a high-temperature phase transition. A distinctive feature of these models
is that for sub-meV mass, the DM mode occupation numbers are high, so that ultralight
DM can lead to classical oscillating field signals that in much of the parameter space offer
the most promising path to detection. The “invisible” QCD axion, long proposed as a
solution to the strong CP problem, is an attractive dark matter candidate; while the viable
mass range spans eight orders of magnitude, sharp predictions can be made for QCD axion
couplings as a function of mass. Small experiments can explore an enormous amount
of ultralight boson dark matter parameter space, with several techniques capable
of reaching sensitivity to the QCD-axion.

B. The Need for a Multi-Experiment Program

We emphasize that a comprehensive exploration of this science requires multiple experi-
ments with complementary sensitivity. This is perhaps most obvious in the case of ultralight
DM, where different experimental techniques cover different ranges of dark matter mass.
Though many different probes of hidden-sector DM explore the keV-to-GeV mass ranges,
they do so while achieving substantially different science — not only do they present distinct
discovery opportunities, they also provide qualitatively different information about the DM.

1. Ultralight DM

In the case of ultra-light bosonic dark matter, the QCD axion remains one of the best
motivated dark matter candidates. While axions provide perhaps the simplest solution to
the strong-CP problem, these models also inevitably produce dark matter via release of
their initial potential energy density. Axion dark matter searches and cosmic microwave
background experiments provide complementary probes of inflation; a measurement of the
axion mass by detection of the dark matter beam would also immediately determine or
constrain the energy scale of cosmic inflation; Recent phenomenology has also indicated a
possibly rich interplay between QCD axions and the electroweak hierarchy problem.

Several distinct techniques are proposed to search for the QCD axion (see Sec. V), many
of which search for a coherent field induced by the axion DM, which oscillates at a frequency
ω = ma/~ for axion mass ma. The large range of viable QCD axion masses, from 10−12 to
10−2 eV, implies a correspondingly large range of frequencies for possible DM signals. No
one technique can cover this wide range of frequencies. Searching for QCD axion DM over
their full parameter space requires a suite of techniques, such as cavity resonators (including
ADMX G2) at high frequencies, lumped element resonators at medium frequencies, and
nuclear magnetic resonance.

Searches for the QCD axion, including continuation of the current ADMX generation 2
experiment should be given high priority in any future dark matter program. However, it
should be noted that more general scalar, pseudoscalar, or vector dark matter models over an
even wider range of masses (from 10−22 eV to 103 eV) are also well motivated. Similarly cost-
effective experimental techniques have been identified that would cover these possibilities.
Many (see Sec. V) import non-traditional detector technology that has nonetheless been
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QCD	Axion	DM	

FIG. 2: Schematic illustration of the complementarity of different types of experiments in exploring

QCD axion DM and ultralight DM more generally. The horizontal axis illustrates the observation-

ally allowed mass range for ultralight DM, with an arrow highlighting the viable mass range for the

QCD axion specifically. Indicative ranges of sensitivity for different techniques are illustrated by

dark blue arrows for coherent field, new-force, and X-ray helioscope techniques (see Sec. V, while a

red arrow indicates the range of DM masses that can be explored by absorption in direct-detection

experiments (see Sec. IV).

well developed in other fields of physics, including atom interferometry, nuclear magnetic
resonance, and fifth force measurements. Large improvements in sensitivity to low mass
bosonic dark matter can and should be quickly obtained by engaging these other communities
in cross-disciplinary collaborations. Meanwhile, the same direct detection experiments that
can search for sub-GeV hidden-sector DM (see Sec. IV) can also be used to search for
absorption of ultralight DM particles in the heavier part of its allowed mass range, from
meV to keV scales, where THz-scale frequencies for the oscillating DM field make field
coherence harder to exploit. The importance of a multi-experiment program to explore
these models comprehensively is illustrated in Figure 2.

2. Hidden-Sector DM

In contrast, searches for hidden-sector DM are primarily exploring a more focused DM
mass range from a keV to several GeV. However, there are very important differences be-
tween the sensitivities of different experiments. These differences can be loosely classified
along three directions: the difference between relativistic and non-relativistic probes of DM
interactions, the importance of probing DM-DM and SM-SM (in addition to DM-SM) inter-
actions, and experimental signals’ dependence on the precise nature of mediator interactions
with familiar matter. We discuss each of these points in turn below and illustrate them
graphically in Figure 3.

In general, accelerator searches (Sec. VI) explore the relativistic production and/or in-
teractions of DM candidates, while direct detection experiments (Sec. IV) search for the
scattering of DM in the Milky Way halo off matter, with relative velocity ∼ 10−3c. The
effect of this kinematic difference is that well-motivated scenarios 10–20 orders of magnitude
beyond the reach of one technique are accessible to the other. For example, thermal freeze-
out of hidden sector DM via a mediator coupled to familiar matter (the “direct” channel)
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FIG. 3: Schematic illustration of the complementarity of different types of experiments in exploring

sharp targets and general regions of interest for hidden-sector DM. Anomalies in data (see Section

III B 5) highlight regions of interest in mediator mass and/or coupling to visible or dark matter; the

red arrows highlight the suggested regions of mediator mass. Blue horizontal arrows for production

mechanisms (see Sections III B 2-III B 4) indicate the parameter regions over which they are viable

(dashed), regions in which they motivate a sharp parameter-space target (solid arrow), and, in

the case of asymmetric DM, a “natural” range where the DM and baryon number densities are

comparable (thick band). Blue and red vertical arrows highlight directions in “theory space” that

have significant impact on detection strategies, while the green vertical arrows indicate the models

to which different experimental approaches are most sensitive. Direct detection is discussed in

Section IV, accelerator-based experiments in Section VI, and cosmology and nuclear and atomic

physics probes in Section VII.

represents a precise target of interest. For elastically scattering scalar DM charged under a
new force, most of the sub-GeV parameter space for this scenario can be explored by the
next generation of both accelerator and direct detection experiments. If instead the DM is
axially coupled (as a Majorana fermion must be) or scatters inelastically, then direct detec-
tion rates are suppressed by anywhere from 6 to 18 orders of magnitude, while accelerator
production rates are within one to two decades. Therefore, while both techniques can ex-
plore this possibility, only accelerators are able to do so robustly. The converse is true if
the mediator of DM-SM scattering is much lighter than the DM itself. In this case, direct
detection rates are parametrically enhanced by up to 12 orders of magnitude, because of
their low momentum transfer. This opens the possibility of testing the idea that the DM
abundance “freezes in” through DM and SM interactions with a very light mediator, which
would be too weakly coupled to be seen at accelerators.
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It may be that the new force at the heart of hidden sector DM is most readily explored,
not through DM-SM interactions as discussed above, but through the new physics it in-
duces within the DM or visible sector. These possibilities imply considerable synergy with
disciplines including astrophysics, cosmology, and nuclear, atomic, and condensed matter
physics. Indeed, there are existing experimental anomalies that may be pointing towards
dark sector physics; testing these is a crucial piece of the search for dark matter and one of
the recurring themes of Sec. VII. For example, dark matter self-interactions have been sug-
gested as an explanation of puzzles in small-scale cosmological structure. Small investments
in simulations and astroparticle theory can leverage the enormous amount of cosmological
data already being collected to shed light on these puzzles, providing not just constraints
on dark matter candidates, but measurements of the properties of dark matter. Another
sharp motivation for small experiments is the 8Be anomaly, a possible signal of a new force
interacting with nuclei and electrons. The 8Be anomaly strongly motivates proposed fol-
lowup nuclear experiments that are fast (under 2 years) and cheap (a small fraction of the
small projects threshold), as well as isotope shift spectroscopy experiments and accelerator
searches for new bosons with masses ∼ 10 MeV and electron couplings ε ∼ 10−4 − 10−3. It
is quite intriguing that new models, astrophysical observations, and existing experimental
anomalies point to the 1 to 100 MeV mass scale as a high-value target region for dark matter
and dark mediator searches.

We also highlight the value of exploring both electron and nucleon couplings to DM and
dark forces. While the most widely used benchmark model — a kinetically mixed dark
photon — couples equally to electrons and protons, other possibilities would have one of
these couplings much larger than the other (for example, a scalar mediator with mass-
proportional couplings or a vector mediator coupled primarily to baryon number, lepton
number, or another combination of charges). This provides motivation for a program of small
direct-detection experiments that includes both proton and electron recoil experiments, and
for an accelerator-based program that includes both electron- and proton-beam experiments
to maximize sensitivity. Similarly, ultralight DM can have a variety of couplings and there
is good motivation to search for all of them, even if experiments cover overlapping mass
ranges.

It is just as important to emphasize that, even when they probe the same DM candi-
dates, various kinds of experiments offer different information about the DM. For example, a
discovery of a new particle at an underground direct-detection experiment would constitute
strong evidence that such a particle constitutes all or at least part of the DM, but cannot
disentangle the particle’s couplings from its abundance. In contrast, accelerator-based ex-
periments provide a clear probe of particle properties, but not its stability on cosmological
timescales.

3. Further Motivations and Opportunities

While the science case for many of these opportunities falls nicely into either ultralight
or hidden-sector DM, these are certainly not the limits of well-motivated possibilities. For
example, the LIGO discovery of gravitational waves from colliding black holes has renewed
interest in multi-solar-mass primordial black hole DM. The LIGO observation sharply moti-
vates a proposed microlensing search (see Sec. VII) that can confirm or exclude the possibility
of intermediate mass black hole dark matter using existing facilities with minimal funding.

The hunt for dark matter now crosses multiple frontiers and benefits from vibrant com-
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munication between many subdisciplines of physics, including astrophysics, cosmology, and
nuclear, atomic, and condensed matter physics. Innovations springing from these collab-
orations have created a wealth of new ideas that can be explored by inexpensive exper-
iments. Healthy support for theory is essential to maintaining the flow of creative and
cross-disciplinary ideas that have been seen in recent years, and which may finally unmask
the particle identity of dark matter.
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III. THEORY OVERVIEW AND MOTIVATIONS

This section further explains the motivations for DM candidates noted in the Science
Case, and defines several sharp parameter-space targets and broad regions of interest within
their parameter spaces.

A. WIMPs

WIMP dark matter — composed of particles that interact through the SM weak interac-
tions, and usually assumed to be produced through thermal freeze-out — has long been an
important benchmark model. Indeed, most of the effort in direct and indirect DM detec-
tion, including the G2 program in the US, is motivated by the WIMP hypothesis. There is
scientific value to exploring WIMP parameter space beyond the G2 program, but this area
is typically the purview of large-scale experiments and is beyond the scope of this report.
We do note, however that there are some aspects of WIMP physics complementary to the
G2 program where small experiments have an important role to play. In particular, the
workshop included discussions of small experiments searching for spin-dependent WIMP
interactions and the “low-mass WIMP” parameter space from ∼ 1 − 10 GeV. The latter
is, in fact, mostly below the mass range for conventional thermal WIMPs, and scientifically
motivated by hidden-sector dark matter, discussed below.

Both top-down and bottom-up considerations motivate multi-GeV to TeV-scale WIMP
masses. These are the natural mass scales for any particle involved in solving the hierarchy
problem, or for a particle whose mass shares a common origin with the Standard Model
Higgs. A similar mass range is singled out for annihilation through weak interactions to
give rise to the observed DM abundance – at masses much higher than a TeV or lower than
several GeV (the Lee-Weinberg bound), the DM annihilation cross-sections are too small
and therefore an overabundance of thermal DM would be expected.

B. Hidden Sector DM

The absence of sizable DM interactions with ordinary matter motivates the simple hy-
pothesis that it consists of particles neutral under SM forces, but perhaps charged under
new forces that have not yet been discovered. Such hidden sectors have been considered
as a possible origin for dark matter for decades [3–7]. Hidden-sector DM arises in Hidden
Valleys [8] and their explicit top-down string constructions [9], can live alongside TeV-scale
Standard Model extensions, including supersymmetry [10–12] and composite Higgs sectors,
and is largely unconstrained by current data.

While hidden-sector dark matter could logically have no interactions with the Standard
Model, there are several strong motivations to look for such interactions. First, general
symmetry arguments allow several types of “portal” interaction between generic hidden sec-
tors and the Standard Model, which can be generated by radiative corrections. Second,
these modest couplings can play a key role in realizing the dark matter abundance — for
example, determining the DM abundance via thermal freeze-out (like in the standard WIMP
paradigm), depleting a thermal component in Asymmetric DM [13], mediating the produc-
tion of DM from a bath of SM particles in freeze-in scenarios [14–18], or maintaining kinetic
equilibrium while hidden-sector dynamics depletes the DM number density (SIMP/ELDER
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scenarios) [19–22]. Each of these mechanisms implies sharp targets in coupling space, which
are strikingly compatible with the (broad) expectations for radiatively generated portal
couplings, and in many cases, experimentally accessible.

The natural mass range for hidden-sector DM is broader than for WIMPs, but still in
the vicinity of Standard Model mass scales — from about 100 TeV down to keV masses
or perhaps even lower. If the physics that generates the weak scale couples to the hidden
sector only through the portal interaction, it is natural for hidden sector matter to be
parametrically lighter than the weak scale [11, 12, 23, 24]. Alternately, the hidden sector
mass scale may arise from confinement of a hidden gauge group. It has long been argued
that supersymmetry breaking (or other mechanism responsible for generating weak-scale
masses) could also generate masses for many hidden-sector particles, triggering a confining
phase transition in the broad vicinity of the weak scale.

The high-mass parameter space for hidden-sector DM, above several GeV, overlaps WIMP
parameter space and has similar phenomenology. In contrast, the low-mass parameter space
for hidden-sector DM, below a few GeV DM mass, is not well explored by traditional WIMP
searches and motivates new experimental strategies for detection. This low-mass region also
opens up the possibility of cosmologically significant DM self-interactions, and also enables
new mechanisms for quasi-thermal DM production.

1. Benchmark Models of Hidden-Sector DM

The observable signatures of hidden sector DM are dictated by the type of new force
coupling the DM to familiar matter, and the nature of the DM coupling to this force.

a. Mediators and their SM Couplings A new force can be mediated by a vector or
scalar boson, which may couple to the SM in a variety of ways. A useful characterization of
these interactions is by the following simplified models:

LV ⊃ Vµf̄(gVf γ
µ + aVf γ

µγ5)f (1)

LS ⊃ f̄(gSf + γ5a
S
f )fφ (2)

for (axial) vector mediator Vµ or (pseudo)-scalar mediator φ.
The structure of the couplings gf and af depends on how the mediator coupling to familiar

matter arises. Two important special cases are the “horizontal portals” — the unique
renormalizable interactions of an SM-neutral boson compatible with all SM symmetries are
[25–27]:

L ⊃

{
− ε

2 cos θW
BµνF

′µν vector portal ⇒ gVf ≈ εeqf

(µφ+ λφ2)H†H Higgs portal ⇒ gSf = µmf/m
2
h,

(3)

where Bµν , F
′
µν ≡ ∂µA

′
ν − ∂νA

′
µ are the hypercharge and dark U(1)D vector boson field

strengths, eqf the electric charge of each SM particle, H is the Higgs doublet, mf the mass
of fundamental fermion f , and mh the SM Higgs mass.

While these are justifiably emphasized as benchmark models, high-energy extensions of
the Standard Model readily open up the more general parameter space of (1) and (2) —
for example, vector couplings to anomalous global symmetries of the SM like baryon or
lepton number; chiral couplings with non-zero aV from Z-mixing or “effective Z ′” models;
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and pseudo-scalar couplings or enhanced first-generation scalar couplings from an extended
Higgs sector.

It is natural for any of these couplings to be small enough to have escaped detection thus
far, yet large enough to explain the primordial generation of dark matter. For example, loops
of heavy particles of mass M charged under both U(1)Y and the new U(1)D gauge group
generate mixing at the level of ε ∼ g′gD/16π2 log(M/Λ), where g′ and gD are the U(1)Y and
U(1)D charges respectively of the heavy particle, and Λ is an ultraviolet cutoff. Assuming
an O(1) log and gD ∼ g suggests ε ∼ 10−3 − 10−2. Enhanced symmetry of the fundamental
theory (e.g. grand unification of SM forces) leads to an approximate cancellation so that the
effective log is itself loop-suppressed, suggesting ε ∼ 10−5 − 10−3. Such couplings are in the
natural ballpark suggested by thermal or quasi-thermal DM generation mechanisms. Even
smaller couplings, as needed for DM freeze-in, can easily be generated, for example if U(1)D
is also embedded in a non-Abelian group or is weakly coupled, if the coupling to ordinary
matter is suppressed by an additional small mixing angle, or by non-perturbative effects.

We comment briefly on the status of model-independent constraints on the portal cou-
plings:

• The Vector portal is most constrained by muon and electron magnetic dipole moments
for sub-GeV mediators [28, 29], and by precision electroweak physics [30] for heavier
mediators. These model-independent constraints are generally (and especially at low
mediator masses) surpassed by those arising from searches visible or invisible mediator
decays, or from DM physics.

• The proportionality of Higgs portal couplings to particle masses implies strong con-
straints on these models from heavy meson decays, although some new territory can
nonetheless be explored by proposed dark matter experiments (see e.g. [31]). It is
also worth emphasizing that these constraints are very specific to the minimal model
— scalar portal mixing with a minimal SM Higgs — and constraints directly on the
first-generation couplings of (2) are many orders of magnitude weaker.

• Another simple benchmark is the coupling to an SM global symmetry like baryon
or lepton number. The resulting interactions of electrically neutral particles lead to
additional constraints — in particular, limits on e − ν scattering [32, 33] and low-
energy neutron scattering data [34, 35] set the tightest constraints on new bosons
coupled to lepton and baryon number, respectively. Even so, searches for DM-electron
and DM-hadron interactions explore regions allowed by these constraints over most of
the relevant DM mass range.

In summary, the next generation of searches for DM interactions will probe viable and
motivated parameter space for all the portal interactions. The viability of global symmetry
couplings underscores the importance of separately exploring DM couplings to leptons and
hadrons.

b. Coupling to the Dark Sector: a vector portal case-study Turning our attention to the
dark sector, it is once again useful to introduce a simplified model. Focusing for concrete-
ness on vector mediators (though analogous phenomenology arises for scalar mediators), we
consider dark sector matter with mass structure

−L ⊃ mDηξ +
mη

2
ηη+

mξ

2
ξξ + h.c. (fermion), (4)

−L ⊃ µ2ϕ∗ϕ+
1

2
ρ2ϕϕ+ h.c. (scalar). (5)
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where η and ξ are Weyl fermions with U(1)D charge ±gD and ϕ a complex scalar with
U(1)D charge gD. While dark sectors can have much richer structure — including for ex-
ample confined or Higgsed non-Abelian gauge groups, or multiple kinematically accessible
matter species (see Section VII D) — these simplified models encapsulate much of the phe-
nomenology of the DM state itself.

In the above, mD and µ are U(1)D-preserving mass terms and mη, mξ, and ρ are U(1)D
breaking mass terms. Since mA′ 6= 0 breaks the U(1)D symmetry, it is reasonable for all mass
terms to be present giving rise to two dark-sector mass eigenstates with the A′ primarily me-
diating an inelastic transition between them. Alternately, residual discrete symmetries can
lead to symmetry limits where the A′-mediated transition is mass-diagonal: Dirac fermions
(mη,ξ = 0) or complex scalars (ρ = 0) charged under U(1)D or an axially coupled Majorana
fermion (mD = 0). These distinctions significantly affect the DM phenomenology, especially
at the low velocities relevant for direct and indirect detection — for example, Majorana
fermions have p-wave annihilation and direct detection cross-sections suppressed by a fac-
tor of (q/mχ)2, where q is the momentum transfer, relative to Dirac fermions or elastically
scattering scalars. A detailed classification, including scalar mediators, can be found in e.g.
[36].

Accelerator experiments searching for DM production are particularly robust probes of
models with significant U(1)D-breaking masses, which generally suppress direct detection
cross-sections by either velocity factors or higher powers of ε. On the other hand, models
with small U(1)D-breaking so that mA′ � mDM can have dramatically enhanced direct
detection cross-sections due to low momentum transfer. Therefore, a broad experimental
program is required to search for hidden-sector DM.

2. Thermal Relic Targets

If DM couples sufficiently to ordinary matter that it reached thermal equilibrium with
the Standard Model in the early Universe, there must be some interaction that depletes its
abundance. The simplest possibility is that the abundance is depleted by DM annihilation
arising from the portal interactions noted above.

Dark matter coupled to a dark vector or scalar mediator can annihilate in two qualitatively
different ways, depending on the DM-dark photon mass hierarchy:

• “Secluded” annihilation to pairs of mediators (e.g. χχ → MED MED), followed by
mediator decays to SM particles, is allowed for mχ > mMED. The annihilation cross-

section 〈σv〉 ∝ g4D
m2
χ
, where gD is the DM-mediator coupling, is independent of the

mediator-Standard Model coupling, and so this process does not imply a thermal
target for the latter. For vector mediators, this process leads to unsuppressed annihi-
lations down to low temperatures and is therefore excluded by CMB data for sub-GeV
dark matter, as discussed below. This argues for the regime in which mχ < mA′ ,
where a different channel must dominate DM annihilation. Secluded annihilation into
scalar mediators is phenomenologically viable, provided the DM Yukawa couplings are
suitably small (e.g. ∼ 3 · 10−5 − 3 · 10−3 for MeV–GeV dark matter) to achieve the
thermal relic cross-section.

• “Direct” annihilation into Standard Model fermions through an s-channel mediator
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has an annihilation cross-section scaling as

〈σv〉 ∼
g2
Dg

2
SMm

2
χ

m4
MED

(6)

for a vector mediator, where gSM is the SM-mediator coupling. This process offers a
clear, predictive target for discovery or falsifiability, since the dark coupling gD and
mass ratio mχ/mA′ are at most O(1), so there is a minimum SM-mediator coupling
gSM compatible with a thermal history. This mixing target for the vector portal, at the
level of ε ∼ 10−7m2

A′/(mχ MeV
√
αD) with αD = g2

D/4π (and therefore quite compatible
with the level of mixing expected from one- or two-loop effects), is an important
benchmark for both mediator and dark matter searches. Direct annihilation of sub-
GeV DM through a scalar mediator requires fairly large scalar mixing to compensate
for the small Yukawa couplings of SM annihilation products, and is excluded by meson
decay constraints [31].

An important constraint on low-mass thermal DM comes from the effect of late-time
DM annihilation on the CMB power spectrum [37–41]. Planck data constrains the power
injected by DM annihilation at ∼ eV temperatures [42]:

pann = feff〈σv〉T∼ eV/mDM < 3.5× 10−11 GeV−3 (7)

where feff ∼ 0.15−1 for most annihilation modes (see e.g. [40]), so that the annihilation rate
of sub-GeV thermal dark matter at eV-scale temperatures must be suppressed by 1–5 orders
of magnitude relative to the annihilation rate at T ∼ mDM/20 relevant for DM annihilation,
for DM in the MeV-GeV regime.

This constraint rules out secluded annihilation into vectors and direct annihilation of
Dirac fermions through the vector portal, but many of the generic DM models presented
above experience suppressed annihilation at low temperatures, due to one of three effects:

• Velocity-suppression, for example from p-wave annihilation processes with σv ∝ v2

(as in direct annihilation of scalar or Majorana fermion through a vector mediator, or
secluded annihilation to scalars).

• Population suppression, if the leading annihilation process involves an excited state
that decays or is thermally depopulated in between freeze-out and recombination eras
(as in direct annihilation of pseudo-Dirac or inelastic scalar DM through a vector
mediator).

• Particle-anti-particle asymmetry, if annihilation in the early universe is sufficiently
effective to cosmologically deplete the anti-particle; note in this case, cosmological
constraints imply a bound on the minimum annihilation cross-section [43].

In summary, the paradigm of hidden-sector DM that was in thermal equilibrium with
the Standard Model in the early universe features viable models that evade existing con-
straints.Moreover, the subset of models where DM annihilates directly into the SM are of
particular interest to the community, as these offer a predictive and bounded target that
new direct detection and accelerator probes can aim to robustly discover or falsify.

The mapping of these thermal targets onto direct detection and accelerator observables
are described in more detail in Sections IV and VI, respectively. Broadly speaking, for
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each case of DM spin and mass structure (which, together with mediator spin, dictate the
velocity-dependence of both annihilation and scattering cross-sections) thermal freeze-out
implies a minimum production rate at accelerators and a precise prediction for the direct
detection cross-section. Accelerator yields vary by 2–3 orders of magnitude depending on
these spins, with the variation arising entirely from the velocity-dependence of annihilation
cross-sections and the resulting spread in the coupling constants implied by (6); direct
detection yields vary more dramatically because of the low velocity of DM in the local Halo
— particularly when annihilation proceeds through a vector mediator, in which case the
leading contribution to elastic scattering may be a one-loop diagram.

3. Targets from quasi-thermal DM production

Asymmetric dark matter (ADM) is a paradigm where the DM relic abundance is set by a
primordial asymmetry, similar to the baryons, rather than by a thermal freeze-out process.
In a hidden sector model of ADM, where the dark matter sector is in chemical equilibrium
with the standard model early in the universe, the DM and baryon abundances are naturally
related, so that ΩX ∼ rΩbmX/mp where r is an O(1) number that depends on the nature of
the operator maintaining chemical equilibrium [13, 44]. This, combined with the observed
ratio ΩDM ∼ 5Ωb, motivates DM masses of several GeV. Models where the DM is produced
from an out-of-equilibrium decay have r � 1, so that the DM particle X can be much lighter
than the proton.

The interaction between the dark sector and the Standard Model that generates a DM
asymmetry may not be detectable, but ADM also requires an annihilation process that
depopulates the symmetric component of DM. If X is a fermion, this symmetric component
must be substantially depopulated to evade the CMB constraints discussed in III B 2. As for
thermal freeze-out, suitably large annihilation cross-sections require a new force. Assuming
the annihilation proceeds through the direct channel (i.e. mMED > mX), the minimum
annihilation cross-section implies a minimum coupling and hence target for direct detection
and accelerator production that can be explored by near-future experiments [43]. Secluded
annihilation (to vector or scalar mediators) is also possible [13], and allows viable ADM
models with scattering or production cross-sections below this milestone.

Another intriguing possibility arises for dark matter particles χ with mass near the QCD
confinement scale, ΛQCD ∼ 100 MeV, which could arise as mesons or baryons of a hidden-
sector ”mirror copy” of QCD [8, 45]. For example, number-changing process 3χ ↔ 2χ
can deplete the χ abundance [19, 20], naturally achieving the correct relic density [21, 46,
47]. These “Strongly Interacting Massive Particle” (SIMP) models require elastic scattering
between the SIMP and SM particles to keep the two sectors in kinetic equilibrium until the
3 → 2 scattering freezes out — so, even though DM annihilation occurs within the hidden
sector, there is a robust lower bound on the SIMP-electron elastic scattering cross-section
(saturating the bound realizes the ”Elastically Decoupling Relic” (ELDER) scenario [22]),
which can naturally be realized by a dark photon. The resulting predictions for DM direct
detection cross-sections (assuming elastic DM coupling to the dark photon) and accelerator
production are shown in Sections IV and VI alongside the thermal targets. The allowed
mass range for SIMP or ELDER DM is restricted to 5 MeV . mχ . 200 MeV, with the
lower bound arising from CMB measurements and the upper bound from unitarity of χ
self-scattering. These models are discussed further in Section VII D.

25



4. Light mediators and Freeze-in

If the DM is very weakly coupled to the SM and never thermalizes, its abundance can
“freeze in” through very rare interactions at temperatures near the DM mass — a mechanism
first noted in the contexts of gravitino [14], sneutrino [15], and sterile neutrino [16, 17] DM,
and subsequently generalized by [18]. Freeze-in can be realized by hidden-sector DM with
very weak mixing. In this case, it implies a prediction for the DM production/annihilation
cross-section that is orders of magnitude below the thermal freeze-out level, and correspond-
ingly low predictions for couplings. For example, αDε

2 ∼ 10−22mχ/GeV for freeze-in via
a light vector-portal mediator [48–50], compared to αDε

2 ∼ 10−8m2
χ/GeV2 for the Dirac

fermion direct annihilation benchmark of Section III B 2. Thus, even if freeze-in arises
through interactions with the electron or proton, much of the relevant parameter space
is beyond the reach of laboratory experiments.

It is, indeed, remarkable that any of this parameter space can be explored by laboratory
experiments. In particular, if the particle mediating DM-SM interactions is much lighter
than the DM itself, the DM-SM scattering cross section is enhanced, scaling (assuming
a velocity-independent elastic interaction) as µ2

χ,TαDε
2/m4

A′ , where µχ,T is the DM-target

reduced mass, at scattering momentum transfers q with q2 � m2
A′ , saturating at µ2

χ,TαDε
2/q4

for sufficiently light mediators. Because the typical momentum transfer in DM-electron
scattering is O( keV), this enhancement can be dramatic enough to compensate for the
small couplings predicted in the freeze-in scenario. Such a large mass hierarchy between the
mediator and DM masses can arise from an enhanced symmetry limit. Indeed, for a vector
mediator the approximate U(1)D-symmetric limit realizes both mχ � mA′ and the Dirac (or
elastic scalar) mass structure for which velocity-independent elastic scattering dominates, as
assumed above. Freeze-in via heavier mediators would lead to a smaller predicted scattering
cross-section; significant phase space can be explored for mediator masses . 10 keV.

5. Further Opportunities in hidden-sector physics

The primary focus of the preceding discussion is on the role of new forces in the dark
sector in explaining the cosmological abundance of DM. But any such force can also have
important consequences for the physics of familiar matter and of dark matter, separately.
This motivates searches for new bosons with weak coupling to the Standard Model, and
for effects of dark matter self-interactions on cosmological structure formation. Intriguingly,
there are hints of both kinds of effect, summarized further in Sections VII B and VII C
respectively. We summarize these briefly here, and note the parameter regions suggested by
each anomaly.

A number of curious experimental results may point indirectly to the existence of light
bosons with weak couplings to the Standard Model. The most famous example is the
measurement of anomalous magnetic moment of the muon, (g − 2)µ, whose experimental
determination [51] famously shows a ∼ 3σ discrepancy with the most sophisticated available
theoretical predictions [52]. As constraints from the null results of LHC searches on the
masses of electroweakly charged particles push into the several hundred GeV regime, a light
weakly coupled boson with mass of order 10 − 100 MeV and coupling to the muon around
10−3 remains as a leading new physics explanation [53]. In addition, the radius of the proton
as measured by the 2S−2P transition frequency in muonic hydrogen is famously discrepant
compared with the value extracted from e-p scattering [54]. The tension between the two
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measurements can be alleviated by positing a ∼ 10 MeV mass spin 1 boson with muon-
specific couplings around 10−3 [55]. Finally, the rate of π0 → e+e− measured by KTeV [56]
shows a 2 − 3σ deviation compared to Standard Model expectations [57] and can also be
explained by the existence of a vector particle of mass around 10 MeV with axial couplings
to both first generation quarks and electrons on the order of 10−3 [58].

A direct search for light weakly coupled bosons produced in nuclear transitions and decay-
ing into e+e− by the ATOMKI group [59] finds an excess with a high statistical significance
in the transition of the 1+ 18.15 MeV excited state of Beryllium-8 to its 0+ ground state
at a particular e+e− opening angle and invariant mass consistent with an intermediate bo-
son of mass ∼ 16.5 MeV and couplings of order 10−4 − 10−3 to quarks and leptons [60].
The parameter space is roughly consistent with regions explaining the (g − 2)µ and KTeV
experimental results [61, 62]

On the astrophysical side, numerical simulations of galaxy formation, while widely suc-
cessful at the largest scales, show discrepancies when confronted with observations of smaller
scale structures. While it may be possible that these discrepancies represent poor modeling
of the baryonic components of galaxies, much of the tension between simulation and obser-
vation can be removed by postulating that the dark matter is self-interacting. Combined fits
to observations of dwarf galaxies, low surface brightness spiral galaxies, and galaxy clusters
points to a parameter space where dark matter whose mass is 10 − 100 GeV interacts via
exchange of a dark force carrier whose mass is 10− 20 MeV [63].

C. Ultralight Dark Matter

The size of dwarf galaxies constrains the nature of sub-keV dark matter to be bosonic
because Fermi degeneracy pressure would prevent the formation of galactic substructure at
this scale from gravitationally clumped fermionic dark matter. Moreover, the mass of this
light bosonic dark matter, whether a scalar, pseudoscalar, or vector, should be greater than
10−22 eV to avoid having its Compton wavelength exceed the size of the observed dwarf
galaxies. Due to their low mass, bosons lighter than about a keV can couple linearly to
Standard Model fields, and nonetheless be cosmologically long-lived dark matter candidates.
Due to this linear coupling, these bosons are also mediators of long-range spin-dependent
or spin-independent forces. As with neutrinos, the smallness of the boson mass suggests a
connection to UV physics at high scales via a see-saw mechanism which generates the mass.
Various viable cosmological production mechanisms have been proposed for ultralight dark
matter, thus offering interesting probes of this new UV physics.

1. The QCD Axion

The best known example of light bosonic DM is the QCD axion, a well-motivated can-
didate because it can solve the long-standing strong CP problem [64–67], explaining the
puzzle of the vanishing neutron electric dipole moment. It also simultaneously guarantees
the production of dark matter at some abundance through a natural production mechanism
of vacuum relaxation [68–70]. Axions and axion-like particles are generic in many UV theo-
ries (see for example [71]) and they may also be related to the electroweak hierarchy problem
[72].

The QCD axion model is quite economical, requiring only a single parameter – a high
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mass scale fa > 109 GeV at which a postulated new global U(1) “Peccei-Quinn” symmetry
is broken, resulting in a massless Nambu-Goldstone boson – the axion – living in the trough
of a Mexican Hat potential. During the QCD phase transition, the defining axion-gluon
coupling causes the trough of the potential to become tilted by an amount of potential
energy density of approximately Λ4

QCD when the QCD instantons condense to define the
QCD vacuum. The axion field rolls to the bottom of the tilted potential and zeroes out any
pre-existing QCD CP-violating “theta” angle. Simultaneously, the initial potential energy
density is released as ultracold dark matter – excitations about the new potential minimum
whose second derivative determines the tiny axion mass ma ≈ Λ2

QCD/fa. Meanwhile, all
couplings to standard model particles are suppressed by fa and are determined up to a
constant factor of order unity. Axion search experiments typically use the axion mass ma

as the single free model parameter, and aim to cover a range between the “KSVZ” coupling
strength [73, 74] and the “DFSZ” coupling strength [75, 76] which is around a factor of 3
weaker.

The QCD axion is allowed to lie in the mass range of roughly 10−12 eV to 10−2 eV (cor-
responding to experimental frequencies 250 Hz - 2.5 THz). The lower bound arises from
requiring fa not exceed the Planck scale. The upper bound comes from the neutrino pulse
observed from SN1987A having a duration consistent with supernova cooling primarily via
neutrino emission, thus placing a bound on the axion-nucleon coupling and immediately
constraining all phenomenological features of the single-parameter QCD axion model. How-
ever, given astrophysical uncertainties as well as the limited statistics of a single supernova
event, one may also obtain a more conservative upper bound of 1 eV axion mass from hot
dark matter limits.

The QCD axion model has an intricate interplay with models of cosmic inflation, and
discoveries in either field immediately inform the physics of the other. For example, the
amount of initial potential energy density Λ4

QCD sin2 (θ0/2) to be released as axion dark
matter depends on the random initial value θ0 of the strong CP-violating angle to be zeroed
out by the rolling axion field. In models in which the Peccei-Quinn phase transition occurs
after cosmic inflation, many topological domains of different θ0 form and are contained within
our cosmological horizon. The average energy density released as dark matter, averaged over
all domains is then well-determined – Λ4

QCD×1/2. The axion vacuum relaxes to its minimum
at cosmological time 1/3H ≈ 1/ma, during the radiation-dominated era when the photon
density is rapidly red-shifting away. Since vacuum energy does not red-shift, small values
of ma would delay too long the release of this energy as dark matter, giving too large
a axion/photon ratio and thus overproducing dark matter. Another complication is that
topological features such as domain walls and cosmic strings can form, thus temporarily
stabilizing the vacuum energy density and further delaying its release. Assuming equal
contributions to dark matter production from vacuum relaxation and from topological defect
decay, recent lattice calculations estimate that ma . 10− 50 µeV would not be compatible
with this post-inflationary axion scenario [77–80].

The alternative pre-inflationary scenario is one in which the Peccei-Quinn symmetry is
broken prior to inflation so that the initial θ0 is single-valued throughout our cosmological
horizon and nothing then disallows a small value of sin2 (θ0/2) � 1/2 to occur by chance.
The much smaller amount of initial vacuum energy could then be released later in cosmic
time without overproducing dark matter, thus allowing lower axion masses. This scenario
includes the parameter space at large fa near the GUT or Planck scale which is preferred by
string theory [71]. Cosmic inflation also sources a spectrum of axionic excitations resulting
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in a potentially observable CMB isocurvature power spectral density scaling as (HI/fa)
2

where HI is the Hubble scale during inflation. Constraints on isocurvature then constrain
this ratio of inflation and Peccei-Quinn scales [81–83].

If a low mass axion with ma . 10− 50 µeV is discovered, then this immediately implies
the pre-inflationary axion scenario. The upper bounds on isocurvature then constrain HI

to a scale too low to produce any potentially observable CMB B-modes (with primordial
gravitational wave spectral density (HI/Mp)

2) and dark matter axion studies would become
the primary tool to probe cosmic inflation. Conversely, if CMB B-modes are discovered first,
then only the post-inflationary axion scenario remains viable, the low axion mass window is
closed and dark matter axion searches should be focused on higher masses.

2. General phenomenology of sub-meV mass bosonic dark matter (including axions)

Since we do not know the nature of dark matter, it is important to look broadly to
cover all candidates in this entire mass range from 10−22 eV to 1 keV. While non-relativistic
cold dark matter of any form has very small kinetic broadening, low mass bosonic dark
matter particles act collectively as a coherently oscillating semiclassical wave with high
mode occupation number. For masses less than a few milli-eV corresponding to signal
frequencies less than THz, this property can be used to detect bosonic dark matter via novel
experimental techniques targeting continuous wave signals rather than impulse detection. In
many cases, these experimental techniques have been well-developed in other fields of physics
and had not previously been applied to the problem of dark matter detection. Cost-effective
experiments are therefore possible which can quickly explore new parameter space.

These direct detection experiments rely on coupling the coherently oscillating dark matter
field to Standard Model (SM) particles via four basic types of operators:

1. Electromagnetism: This coupling allows dark matter to transfer energy into elec-
tromagnetic fields to be detected via photon, voltage, or flux sensors. For example,
the well-established haloscope technique [84] uses a microwave cavity to resonantly
enhance the transfer of power from the incoming axion or hidden photon dark matter
beam into electromagnetic modes.

2. QCD: This gluon coupling gives a time-oscillating electric dipole moment (EDM) for
nucleons which can be detected via nuclear magnetic resonance (NMR) techniques.

3. Spins of fermions (either electrons or nucleons): These couplings cause the spins of
electrons or nucleons to precess which can again be detected via NMR or electron spin
resonance.

4. Scalar couplings: These couplings can give a force directly on SM particles, or
can affect fundamental constants such as SM particle masses or charges. For example
these are couplings to a fermion’s mass (without a γ5) or a coupling to a gauge boson’s
kinetic term. Any precision measurement sensitive to small forces can potentially be
modified to search for anomalous AC signal modulations.

It is desirable to have a variety of experiments to probe all of these possible couplings.
First, using different couplings of the dark matter leads to a very different and highly
complementary detection techniques that can together allow searches through much more of
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parameter space than would otherwise be possible. Second, we do not know what couplings
the dark matter has so it is important to probe all possibilities as broadly as possible. Third,
if dark matter is discovered in one of these experiments it will be extremely important to
detect it with a different technique both for confirmation and because it is crucial to measure
as many couplings as possible in order to learn as much as possible about the dark matter
model. Such light dark matter often arises from physics at very high energies. Measuring the
mass and couplings of this particle would be in many cases the only way to study such high
energy scales experimentally; interesting scales such as the Planck, GUT, or string scales,
are far beyond what can be accessed in a collider. Finally, as with any type of dark matter,
it is of critical importance to follow-up the direct detection signal with an accelerator or
fifth-force type experiment to directly measure the couplings in order to disentangle them
from the uncertainty in the intensity of the dark matter flux. These laboratory experiments
would presumably be easier to design, once armed with knowledge of the dark matter mass
and coupling scale.

The high temporal and spatial coherence of the collectively oscillating modes of bosonic
dark matter also leads immediately to some interesting follow-up studies. Because the
experiments often rely on narrowband resonant detectors which must be tuned to the signal,
they are usually designed to be able to reproduce the signal on very short time scales of
minutes to hours. So blind analyses need not be used since a new, independent dataset can be
immediately acquired. Moreover, by simply integrating longer before Fourier transforming
the time-series signal, the energy spectrum of the dark matter can be measured with higher
frequency resolution. This allows the substructure of the dark matter velocity distribution to
also be quickly measured with the same detector, as well as its annual modulation. Finally,
the high spatial coherence of the bosonic wave on scales of order the deBroglie wavelength
allow the use of multiple identical but spatially separated detectors to map out the local
wavefront of the dark matter and hence to determine its local phase space distribution. These
studies can indicate whether the dark matter is fully virialized or if there is substructure
due to recent galaxy merger activity.

Furthermore, all these light fields are produced or influenced by cosmic inflation and
their discovery can provide valuable information on the inflationary sector and hence the
earliest times in the universe. As discussed above, a measurement of the axion mass can
provide critical information on the scale of inflation. As another example, vectors dark
matter (hidden or dark photons) are directly produced through quantum fluctuations during
inflation and for high scale inflation would naturally be predicted to have a mass in the range
that can be searched for in many of these experiments [85]. If this vector dark matter is
detected, then its power spectrum can be measured, giving a confirmation of this production
mechanism and a determination of the scale of cosmic inflation.

Detectors for this ultralight dark matter often rely on very high precision experimental
techniques that have a wide range of broader impacts. On the fundamental physics side
other applications for these sensors include searching for new forces of nature, violations
of the equivalence principle, and detecting gravitational waves. There are also more prac-
tical applications including geological mapping, inertial navigation, and a connection with
quantum information.

There are a variety of these high precision sensor technologies that are complementary
including probing different couplings and complementary mass ranges. Excitingly, experi-
ments now appear able to cover this entire mass range, as discussed in Section V.

30



3. Bosonic dark matter from meV-keV

The same considerations as above apply to meV - keV bosonic dark matter but in this
mass range, even the fastest THz electronics cannot resolve the collectively oscillating signal,
and micro-calorimetric techniques must be used for detection of individual particle scattering
processes. For this ultra-low threshold impulse detection, it has been shown that coherent
modes in the detector target material (i.e. phonons) can be utilized. Bosonic dark matter
may be absorbed on a target electron in a superconductor through single phonon emission
[86], or in a semiconductor through single [87, 88] or multiple [87] phonon emission (see
Section IV).

The advantage here is that the bosonic dark matter particle can be absorbed onto a
fermion line and transfer energy equal to its entire mass, whereas the same microcalorimeter
detecting fermionic dark matter can only absorb the recoil kinetic energy which is at most
10−6 of the dark matter rest mass. The experiments capable of detecting dark matter
through absorption over the meV - keV mass range are the same as those searching for keV
- GeV mass dark matter via scattering discussed in Section IV.
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Section Editors: Rouven Essig, Juan Estrada, Dan McKinsey

IV. NEW AVENUES IN DIRECT DETECTION

A. Introduction

Dark matter (DM) direct-detection experiments are an essential laboratory tool in our
quest to identify DM. Their goal is to search for DM particles in our Milky-Way halo that
scatter or absorb in a detector target material. The last few decades have seen enormous ad-
vances in designing and building direct-detection experiments that has led to a many orders
of magnitude improvement in searches for ∼10 keV scale nuclear recoils that are character-
istic of spin-independent scattering of Weakly Interacting Massive Particles (WIMPs) with
masses > 10 GeV. The next generation “G2” LZ experiment is poised to probe a large
fraction of the remaining theoretically well-motivated parameter space for this mass range
over the next few years. Another exciting possibility is that DM has a mass in the O(GeV)
range, and SuperCDMS, the second “G2” direct-detection experiment, is poised to probe
this mass range to unprecedented sensitivity.

As described in Part I of this white paper and summarized below, there are several
scientifically well-motivated DM candidates that will not be probed by either LZ or Super-
CDMS. The “New Avenues In Direct Detection” working group has identified the following
four additional areas in which novel theoretical ideas and impressive experimental advances
enable new small projects that can probe orders of magnitude of previously unexplored DM
parameter space:

1. Sub-GeV Dark Matter (Electron Interactions)

2. Sub-GeV Dark Matter (Nucleon Interactions)

3. Searches down to the Neutrino Floor for O(GeV) Dark Matter

4. WIMP Spin-Dependent Interactions (Proton)

A fifth area of parameter space — high-mass WIMPs (mDM & 10 GeV) — was also
identified as scientifically well-motivated. However, to probe this region beyond the projected
LZ sensitivity will require experiments with very large target masses and significant funds
(& 10 million dollars). Consequently, this parameter space falls outside of the scope of the
workshop and will not be discussed further in this white paper.

B. Summary of Science Case for New Small-Scale Direct-Detection Experiments

Direct-detection experiments play a unique and essential role in our quest to identity the
DM. Several proposals and ideas exist for new experiments that present a low-cost oppor-
tunity — well within the “small-project” scale — to probe DM with masses between
the meV to GeV scale, many orders of magnitude in mass below the planned searches by
the G2 experiments LZ and SuperCDMS (see Fig. 4 for a schematic overview). In fact, the
working group recognizes that recent advances in theory and experiment means that now
is the right time for targeted investments to bring to fruition several recent new ideas and
proposals and develop them into real experiments.
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FIG. 4: Ideas to probe low-mass DM via scattering off, or absorption by, nuclei (NR) or electrons

(ER).

Several well-motivated DM candidates can be probed. In several cases, sharp theory
targets in parameter spaces can be identified, which can be probed by first-generation, low-
cost experiments with target exposures of as little as 100 gram-days. These sharp targets
have been discussed in Section III. They assume that the basic interaction between the DM
and SM particles are through a dark photon, which allows the DM to couple to all electrically
charged particles:

• Elastic Scalar – a (complex) scalar particle, χ, can obtain the observed relic abun-
dance from thermal freeze-out of the “direct-annihilation” process χ + χ∗ ↔ A′∗ →
SM + SM, where A′ is the dark photon [89]. The annihilation cross section, σann is
proportional to αDε

2µχ,e/m
4
A′ , and has precisely the same dependence as the direct-

detection cross section, σDD does on the fundamental parameters, mA′ (the dark-
photon mass), ε (the kinetic mixing), and αD (the “fine-structure constant” of the
dark U(1)) [50] (µχ,e is the DM-electron reduced). In fact, since the final DM relic
abundance, nχ, is proportional to 1/σann, the direct-detection rate is proportional to
nχσDD ∼ σDD/σann, which is a constant for a given mχ. So even if χ constitutes only a
subdominant component of the entire DM, the “target” cross section on the σDD−mχ

plane is a fixed line.

• Asymmetric Fermion – a Dirac fermion can obtain the correct relic abundance from
an initial asymmetry and provides an “asymmetric” DM candidate [13]. However, di-
rect annihilation between DM and SM particles from χ+χ̄→ A′∗ ↔ SM+SM produces
also a symmetric component, whose abundance is smaller for larger annihilation cross
sections [43]. The symmetric component can annihilate and, if its abundance is too
large, distort the Cosmic Microwave Background power spectrum. The CMB thus sets
a lower bound on the annihilation cross section and, therefore, on σDD [50].

• ELDER – An “elastically decoupling relic” (ELDER) has its relic abundance set by
its elastic scattering off SM particles through A′ exchange (as opposed to annihilation
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